Experimental Data Summary: Example 2

Article Authors: Gonzalo García-Miaja, Jacobo Troncoso, Luis Romaní

Corresponding Author: Luis Romaní

Corresponding Author Email: romani@uvigo.es

Article Title: Excess properties for binary systems ionic liquid + ethanol: Experimental

results and theoretical description using the ERAS model

Journal: Fluid Phase Equilibria

Journal Manuscript Code: FPE2008-37776a

Table 2:

System type (Pure, Binary, Ternary, Reaction): Pure **Chemical System(s):**

1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]

1-hexyl-3-methylimidazolium tetrafluoroborate [hmim][BF4]

1-butyl-3-methylpyridinium tetrafluoroborate [bmpyr][BF4]

1-ethyl-3-methylimidazolium ethylsulfate [emim][EtSO4]

1-butyl-3-methylimidazolium methylsulfate [bmim][MetSO4]

1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][triflate]

1-ethyl-3-methylimidazolium trifluoromethanesulfonate [emim][triflate]

Property: density

Experimental Method (be brief): vibrating tube densimeter

Combined Expanded Uncertainty (k = 2) for the Property: $2\sigma(\rho) = 0.1 \text{ kg/m}^3$

Variables and Constraints: temperature T, pressure p (1 atm)

Standard Uncertainty (k = 1) for each Variable and Constraint:

$$\sigma(T) = 0.01 \text{ K}; \ \sigma(p) = 5\%$$

Table: 3

System type (Pure, Binary, Ternary, Reaction): Pure Chemical System(s):

1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]

1-hexyl-3-methylimidazolium tetrafluoroborate [hmim][BF4]

1-butyl-3-methylpyridinium tetrafluoroborate [bmpyr][BF4]

1-ethyl-3-methylimidazolium ethylsulfate [emim][EtSO4]

1-butyl-3-methylimidazolium methylsulfate [bmim][MetSO4]

1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][triflate]

1-ethyl-3-methylimidazolium trifluoromethanesulfonate [emim][triflate]

Property: isobaric heat capacity

Experimental Method (be brief): DSC

Combined Expanded Uncertainty (k = 2) for the Property: $2\sigma(C_p) = 0.3\%$

Variables and Constraints: temperature T, pressure p (1 atm)

Standard Uncertainty (k = 1) for each Variable and Constraint:

$$\sigma(T) = 0.01 \text{ K}; \ \sigma(p) = 5\%$$

```
Table: 4
System type (Pure, Binary, Ternary, Reaction): Pure
Chemical System(s):
       1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]
       1-hexyl-3-methylimidazolium tetrafluoroborate [hmim][BF4]
       1-butyl-3-methylpyridinium tetrafluoroborate [bmpyr][BF4]
       1-ethyl-3-methylimidazolium ethylsulfate [emim][EtSO4]
       1-butyl-3-methylimidazolium methylsulfate [bmim][MetSO4]
       1-butyl-3-methylimidazolium trifluoromethanesulfonate [bmim][triflate]
       1-ethyl-3-methylimidazolium trifluoromethanesulfonate [emim][triflate]
Property: speed of sound
Experimental Method (be brief): pulse echo
Combined Expanded Uncertainty (k = 2) for the Property: 2\sigma(u) = \text{not given}
Variables and Constraints: temperature T, pressure p (1 atm)
Standard Uncertainty (k = 1) for each Variable and Constraint:
       \sigma(T) = 0.1 \text{ K}; \ \sigma(p) = 5\%
Table: 5
System type (Pure, Binary, Ternary, Reaction): Binary
Chemical System(s):
       [hmim][BF4] + ethanol
       [bmpyr][BF4] + ethanol
       [emim][EtSO4] + ethanol
       [bmim][triflate] + ethanol
       [emim][triflate] + ethanol
Property: excess enthalpy
Experimental Method (be brief): Calvet microcalorimeter
Combined Expanded Uncertainty (k = 2) for the Property: 2\sigma(H^{E}) = 4\%
Variables and Constraints: temperature T, mole fraction x of the RTIL
Standard Uncertainty (k = 1) for each Variable and Constraint:
       \sigma(T) = 0.05 \text{ K}; \ \sigma(x) = 0.0001
Table: Supplementary Info SM1 to SM6
System type (Pure, Binary, Ternary, Reaction): Binary
Chemical System(s):
       [bmim][BF4] + ethanol
       [hmim][BF4] + ethanol
       [bmpvr][BF4] + ethanol
       [emim][EtSO4] + ethanol
       [bmim][triflate] + ethanol
       [emim][triflate] + ethanol
Property: density
Experimental Method (be brief): vibrating tube densimeter
Combined Expanded Uncertainty (k = 2) for the Property: 2\sigma(\rho) = 0.1 \text{ kg/m}^3
Variables and Constraints: temperature T, pressure p (1 atm)
Standard Uncertainty (k = 1) for each Variable and Constraint:
       \sigma(T) = 0.01 \text{ K}; \ \sigma(x) = 0.0001; \ \sigma(p) = 5\%
```

```
Table: Supplementary Info SM7 to SM12

Chemical System(s):

[bmim][BF4] + ethanol
[hmim][BF4] + ethanol
[bmpyr][BF4] + ethanol
[emim][EtSO4] + ethanol
[bmim][triflate] + ethanol
[emim][triflate] + ethanol
[emim][triflate] + ethanol

Property: isobaric heat capacity

Experimental Method (be brief): DSC

Combined Expanded Uncertainty (k = 2) for the Property: 2\sigma(C_p) = 0.3\%

Variables and Constraints: temperature T, mole fraction x, pressure p (1 atm)

Standard Uncertainty (k = 1) for each Variable and Constraint:

\sigma(T) = 0.01 \text{ K}; \sigma(x) = 0.0001; \sigma(p) = 5\%

Location of the Data in the Manuscript:
```